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A finite difference method of calculating steady supersonic flow of an inviscid ideal gas 
is described for the case in which a boundary condition has to be satisfied at the surface 
of any given complicated body shape. The supersonic flow equations are formulated in an 
arbitrary non-orthogonal co-ordinate system and an operator splitting method is used to 
construct discrete representations of the equations of motion. Results are presented to 
demonstrate that the method is capable of capturing shock waves satisfactorily and that it 
produces results in agreement with other theoretical results. Comparisons between numerical 
and experimental results for an intake cowl shape, which has a sharp comer and which is 
representative of a class of complicated body shapes of practical interest, indicates that 
the method can be relied upon to produce accurate results for complicated body shapes. 

1. INTRODUCTION 

A comprehensive list of existing methods of calculating steady inviscid supersonic 
supersonic flow fields is provided in a recent review paper by Taylor [I]. Although the 
number of existing methods is very iarge, new methods that are more efficient, more 
robust and more flexible in operation than existing methods are being sought at 
present. 

The finite difference method described here is a contribution to current research 
aimed at the production of satisfactory new flow calculation methods for different 
types of body shapes associated with aircraft configurations. Although efficiency, 
robustness and flexibility requirements conflict one with another, none is ignored in 
the method described here. 

For the present discussion, it is useful to distinguish two lines of development of 
supersonic flow calculation methods. One consists of methods based on the theory of 
characteristics, for example those described by Chu [2] and Butler [3], in which shock 
waves are fitted as discontinuities. The other consists of methods, stemming from Lax’s 
method [4], based on equations of motion consisting of conservation laws formulated 
as divergence expressions, for example the method described by Kutler and Lomax [5]. 
Other methods relevant in the discussion here are ones which may be regarded as 
hybrids of the two lines described above. The method used by Marconi and Salas [6], 
a method derived from earlier work by Moretti et al. [7], is one such method in which 
all shock waves are fitted as discontinuities but the flow between shock waves and 
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boundaries of the flow-field is calculated using the MacCormack [S] method based 
on divergence expressions of conservation laws. The method described in this paper 
is also hybrid in the sense in which the term is used here. Although certain shock 
waves, e.g. bow shock waves, may be treated as discontinuities, the method presented 
is essentially a shock capturing finite difference method, but the finite difference 
equations are derived by using the theory of characteristics rather than by using 
equations of motion formulated as divergence expressions. 

Marconi and Salas calculated steady supersonic flows associated with certain typical 
aircraft configurations. They used the second order finite difference method of 
MacCormack [8] and employed a numerical conformal transformation technique to 
construct suitable co-ordinate systems. A characteristics-type procedure was employed 
to calculate the flow at points on boundary surfaces, and shock waves were treated 
as discontinuities. 

In contrast to the other numerical methods, that described in this paper is based 
on a formulation of the equations of motion which allows the use of arbitrary non- 
orthogonal co-ordinate systems but does not contain any derivatives of elements of 
the metric tensor. One result of this choice of formulation is that the equations of 
motion are not divergence expressions. Therefore, it is not possible to apply methods 
such as the well known MacCormack method for computing second order finite differ- 
ence solutions. Instead, a first order method [9], based on approximations to character- 
istic relations for a pair of two-dimensional systems of equations, is used. These 
two-dimensional systems are derived from the full equations by an operator splitting 
method-see Section 3. Apart from its practical value, the operator splitting method 
is of academic interest. It is different from those described in the definitive monograph 
by Yanenko [lo]. 

The equations of motion are formulated in terms of an arbitrary non-orthogonal 
co-ordinate system in order to achieve flexibility. This formulation allows the relatively 
straight-forward treatment of many different classes of body shapes without a need for 
extensive re-writing of the part of the computer program concerned with the compu- 
tational algorithm. The user of the program has to specify only three functions to 
describe a body-orientated co-ordinate system in space. This co-ordinate system may 
be formed by combining several sub-systems associated with different parts of a 
body surface, and the simplest imaginable sub-systems appear to work satisfactorily 
in practice. 

The formulation of equations of motion which do not contain derivatives of 
elements of the metric tensor is used in order to achieve good overall computational 
efficiency. Divergence forms of the equations of motion in general co-ordinate 
systems do contain derivatives of elements of the metric tensor. Systems of this type 
were investigated before the present formulation was derived, and it was found that 
large amounts of time had to be spent computing elements of the metric tensor and 
their derivatives. The general procedure of the present method, in which a body- 
orientated co-ordinate system is obtained by simple algebraic operations, is more 
economical than the conformal transformation procedure described by Marconi 
and Salas [6]. Although the gains are counter-balanced to some extent by our use of 
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a first order finite difference scheme, the overail efficiency of the method is acceptable. 
A finite difference method derived from the theory of characteristics was chosen 

in order to achieve uniformity in the calculation of the flow at interior mesh points 
and at finite difference mesh points on boundary surfaces. We believe that this 
uniformity contributes to the robustness of numerical methods. When divergence 
law formulations of the equations of motion are used, the application of boundary 
conditions generally leads to non-uniformity in the treatment of interior and boundary 
points. 

The first order finite difference method was used because previous work suggested 
that this particular technique would lead to a method that would capture shock 
waves satisfactorily. In spite of widely held views to the contrary, there are some 
numerical methods based on equations of motion that are not formulated as 
divergence expressions which can capture shock waves automatically by smoothing 
discontinuities before they are fully developed. Methods, similar to the present one, 
derived using characteristics belong to this class. Some numerical evidence showing 
that the method of this paper can capture shock waves is given in Section 7. Additional 
evidence is available in two papers by Walkden and Caine [9, 111, in a paper by 
Walkden et al. [12], and in a paper by Garabedian and Korn [13]. 

The numerical methods of the present paper were specially devised to treat the 
intake cowl problem described in Section 6. In this problem the body shape cannot 
be mapped simply onto a single co-ordinate surface in some computational working 
space. The locally two-dimensional method was first used in January 1974 to consider 
the intake cowl problem described in this paper. Since that date the method has been 
used to calculate steady supersonic flow fields for bodies from a number of other 
classes: aircraft fuselages, fuselage and cockpit-canopy combinations, wings, turbo- 
machinery blade rows, the tips of rotating and translating helicopter blades. For some 
of these problems, bow shock waves have been fitted as discontinuities. In others, 
however, all the shock waves have been captured. In the latter case, the shock 
discontinuities have been smoothed. 

2. EQUATIONS OF MOTION 

The formulation of the equations of motion given here in Eqs. (1) is for a general 
system of orthogonal co-ordinates. 

Momentum : 
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The dependent variables u1 , u2 , us are velocity 
Expressions for hi and ri , i = 1, 2, 3, in different 
Appendix 1. 

We define 

LAWS 

components in x1, x2, x3 space. 
co-ordinate systems, are given in 

Then 
C virzi = uk and 1 virik = uk , 

vi = c gijuj, 

j 
(3) 

ci = 1 giivj . 

Stratton 1141 provides derivations of Eqs. (3) and other useful equations associated 
with non-orthogonal co-ordinate systems. 

Equations (1) may be re-written in a modified form with ql, +‘, 73 as independent 
variables in place of x1, x2 and x3: 

r  

vliu,+v2?!?+v3au,+-~~=~l, 
1 ap arlu 

w a72 a73 p ar)a a9 

(4) 

We may write uk = x:=1 fii?zi where ?ci denotes the constant values of $ at any 
fixed point P in space. Thus, for any given flow field, since the velocity components, 
uk , k = 1,2, 3, vary with position in space it follows that the co-variant velocity 
components tii will vary with position in space and with the position of the point P. 
Thus it follows that Eqs. (4) are equivalent to 

(5) 

where 

(6) 
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Conservation of Muss and Entropy 

In terms of the independent variables $, v2 and q3, the equations of conservation 
of mass and entropy respectively may be expressed in the following form: 

&-J-+0. 

a 

(8) 

3. FURTHER ANALYSIS OF THE EQUATIONS OF MOTION 

Here we describe an analysis of Eqs. 2(5), 2(7) and 2(8) for the case of supersonic 
flow when the equations form a hyperbolic system. The analysis leads to expressions 
for $-derivatives in terms of q2 and +derivatives of the dependent variables p, 
p,&,~=l,2,3.Th ese expressions form the basis of the numerical method investi- 
gated in this paper. 

A first-order finite difference technique will be used and to this order of accuracy, 
in the neighborhood of a point P, equations 2(5), 2(7) and 2(8) can be approximated 
by simpler equations: 

Elimination of density derivatives between Eqs. (2) and (3) leads to equations which 
can be combined into a single matrix equation: 

where A, B, and C are 4 x 4 matrices, and u and k are vectors: 

(4) 

The matrices A, B and C are given in Appendix 2. 
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Equation (4) splits into two parts: 

One part contains no T3-derivatives, and the other part contains no $-derivatives. 
Now, provided the components of velocity in the (+ - q”) and ($ - q3) planes 

at P are supersonic, Eqs. (5a) and (5b) are hyperbolic. Then these can be represented 
in characteristic form: 

In Eqs. (6) and (7), 

Equation (8) represents two characteristic relations in which 

dij = &l-p, i= 1,2,3, 

d4j = fi5 - @, 

for p = p+i and p = p-j respectively, where 

= ; (C d,jkp). 
z 

(8) 

The characteristic equations equivalent to (5a) are obtained by putting j = 2 and 
m = 3 in Eqs. (6)-(13). Those equivalent to (5b) are obtaining by putting j = 3 
and m = 2. The analysis leading to Eqs. (6)-(13) is straightforward in principle and 
so it has been omitted. 
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Now the four equations (6)-(8) may be written in the form 

A&;) = B++ Ri (14) 

provided a suitable choice of elements for the Cvector Rj and for the 4 x 4 matrices A, 
and Bj is made. 

Then, formally, each of the two sets of systems of equations (14), for which j = 2 
and j = 3 respectively, can be solved for (a/&+)(u/2) and the results combined to 
obtain 

“=B%+C?!t+R 
a+ da+ 4 aq 4 

where 
B4 = A,‘B, , 

C, = A;lC, , (16) 

R, = A,lR, + A,‘R, . 

4. FINITE DIFFERENCE EQUATIONS 

This section contains a brief account of basic ideas used in constructing finite 
difference approximations to the characteristic equations described in Section 3. 

The coefficients of au/+l, au/av2, au/aq3 and the elements of the vectors R2 and R, 
in equations 3(14) for j = 2, 3 are all functions of p, p, u, , us, us, ?jd and ?Ti 
(i, j = 1,2,3). In flows where shock waves occur, these functions are evaluated using 
average values of p, p, u1 , u2 , and ug . 

Prior to solving Eqs. 3(14) to obtain numerical estimates for L3u/aq1 at a point 
(i, j, k) in space, the partial derivatives &/a$, for j = 2 and 3, have to be replaced 
by appropriate finite difference approximations. This is generally done by a first-order 
forward difference approximation if the coefficient of the derivative is negative or zero, 
and by a first-order backward difference approximation if the coefficient is positive. 
A justification of this procedure for constructing finite difference approximations to 
characteristic relations has been given by Courant et al. [15]. Average values of p, 
or u, for m = 1,2, 3, at the point (i, j, k), say, are used in finite difference approxi- 
mations to derivatives in the equations of motion at (i,j, k). For example, (i3p/aq2)i,i,k 
may be approximated by 
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5. CALCULATION PROCEDURES 

5.1. Field Points 

The values of the dependent variables p, p, ul, u2 u3 can be predicted at the point 
(i + 1 j, k) provided they are known at the five points (i, j, k), (i, j f 1, k), (i, j, k -& 1). 
{(~/~~1)(~~2)}~f~,l is evaluated from Eq. 3(14) for s = 2, 3, and then 

Once pi+l,j,k and (~,,&+r,~,~, m = 1, 2, 3, i.e., the elements of u~+~,~,~, have been 
calculated, the values of (~,)~+r,~,~, m = 1,2, 3, can be obtained simply by repeated 
application of the first of Eqs. 2(3). 

The value of pi+l,j.k may be obtained in a number of ways of which two are given 
here. Employing the energy equation yields 

Pi+l,j,k = 
i 

__- 

(Y - l)[H - ml?+ h212 + (%12)1 if1,j.k I 

when His a known universal constant for the flow. 
Alternatively, 

(2) 

where ( P/P%+~,M may be obtained, for example, from Eq. 2(8) by numerical 
integration. 

5.2. Boundary Points 

By making suitable choices of transformation functions xi = xi($, 72, v3), it can be 
ensured that boundary conditions have to be applied only on surfaces represented 
by planes in the working space ($, 772, q3). Several types of boundary conditions may 
be distinguished. For example, there are some boundaries at which the flow is known, 
there are some at which a symmetry condition has to be applied, there are some at 
which shock relations have to be satisfied and there are others at which a condition 
of zero flow through a solid surface has to be applied. The treatment of uniform flow 
and symmetry boundaries is straightforward. 

At a shock or solid surface boundary, certain characteristic relations are replaced 
by boundary conditions. Here to fix ideas, a description is given of the procedure 
followed when a solid surface boundary condition is applied at q2 = 0. 

If N is a vector normal to the solid surface at (i + 1, 0, k) then 

[(i&al + C2a2 + V3a3)i+l,j,k] - N = 0 (4) 
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where the vectors al, a2 and a3 are normals to the co-ordinate surfaces $ = constant, 
y2 = 0 and y3 = constant at the point (i + 1, 0, k). 

In Eq. (4), cm , m = 1,2, 3 is replaced by the expression 

in which ((a/a$)(i;,))& is obtained as part of the solution of finite difference represen- 
tations of Eqs. 3( 14) when j = 3. 

The resulting equation, together with three of the finite difference representations 
of Eqs. 3(14) with j = 2 may then be used to obtain values for the elements of the 
vector 

j a 2.4 t2) ___ - 
( 11 l a+ 2 i,j,h . 

The three equations used are those remaining after that corresponding to the left 
hand characteristic relation (Eq. 3(8) with j = 2 and p = p-) has been omitted in 
favour of the boundary condition treated according to the procedure outlined here. 

Once ~W7M4/2N~~~,k and WWW>>~~~,~ have been evaluated, values of p, p, 
Ul, u2 9 u3 at (i + 1, 0, k) can be obtained by using the procedure described earlier 
for field points. 

5.3. Theoretical Justification of the Splitting Method and Analysis of Stability 

Caine [16] has carried out a detailed theoretical study of a numerical procedure 
based on the following splitting of Eqs. 3(4) 

(6) 

where a2 and iy3 are positive constants such that cy2 + a3 = 1. He derived equations 
corresponding to 3(15) and proved that these equations are identical to equations 3(4) 
for &Q+ for all 01~ and 01~ such that 01~ + a3 = 1. Now, of course, in the special case 
of interest here, when cy2 = cy3 = 4, the same result follows. That is, Eq. 3(15) is 
identical to 3(4). 

Caine [16] also carried out a linear stability analysis and showed that a numerical 
procedure, such as that described here, based on analysis of equations of the form of 
(6) above, is conditionally stable. The amplification matrix of the three-dimensional 
numerical procedure is 

G = CY~G(~) + a3Gf3) 

where Gc2) and Gc3) are the amplification matrices for numerical procedures based on 

581/27/r-8 



112 WALKDEN, CAINE, AND LAWS 

the (?I - 73 and ($ - v3) split equations. He then used the known stability con- 
ditions for the two-dimensional methods to obtain the following sufficient conditions 
for stability of the three-dimensional procedure: 

(7) 

where 1 w2 1 is the eigenvalue of maximum modulus determined from the equation 

/B--WA1 =o 

and / w3 \ is the eigenvalue of maximum modulus determined from the equation 

(C-WwAj==O. 

6. AN INTAKE COWL PROBLEM 

6.1. Intake Cowl Geometry 

Shapes belonging to the family of interest here are defined by the parameters b, h, 
and 13, shown in Fig. 1. 

FIG. 1. Schematic diagram of the intake cowl geometry. 

6.2. The Flow Calculation Problem 

Given a uniform supersonic flow at a specified Mach number in the direction of the 
xl-axis shown in Fig. 1, the problem is to compute the disturbance produced by the 
given intake cowl shape. The boundary conditions to be applied are that there is no 
flow through the boundary surface of the intake and that the flow is symmetrical 
about the plane x2 = 0 for x3 > b and the plane x3 = 0 for x2 > h, -!- x1 tan 8, . 
In addition, of course, the values of the dependent variables p, p, u1 , uz , u3 are known 
on the plane x1 = 0. 

The flow field produced by the intake cowl has three features worth noting: 

(a) The disturbance to the uniform flow propagates outwards away from the cowl 
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surface with increasing x1 so, for any given value of x1 < L, the flow will be uniform 
for large enough values of (x2)” + (x3)“. 

(b) On the upper surface of the intake cowl, starting at its leading edge, a core of 
two-dimensional flow produced by turning the given uniform flow through an angle Bb 
will exist. 

(c) The core of two-dimensional flow will be bounded by the surface bounding the 
region of influence of vertices A and B (see Fig. l), the points of intersection of the 
leading edge and the two side edges of the upper surface of the cowl. The flow spills 
over the side edges and ultimately, for large enough values of x1, disturbances due to 
spillage affect the flow over the full span of the upper surface. The numerical studies 
described later, in Section 6.5, were undertaken to determine if the numerical methods 
described in this paper would predict these disturbances. 

6.3. The Numerical Model of the Intake Cowl Shape 

The numerical method based on finite difference approximations to the equations 
of motion cannot produce accurate results in the immediate neighborhood of the 
sharp leading edge and the sharp side-edges bounding the upper surface of the cowl. 
In fact, no fully numerical method will be accurate in these regions, and the non- 
linearity of the equations of motion prohibits an analytic treatment of flow near to 
the side edges at least. 

To exercise control over the magnitude of numerical truncation errors in the 
neighborhood of sharp edges, a model of the given shape was produced by rounding 
the edges. Figure 2 shows the effect of rounding the side edges by means of a circular 
arc of constant radius 6 in planes x1 = constant. Figure 3 shows the effect of rounding 
at the leading edge of the upper surface of the given cowl: 

X3 

FIG. 2. Modifications to the cross sectional shapes in planes x1 = constant. O’K’B’C’ = original 
rectangular section. O’K’I’J’C’ = modified section. 

K”M” represents trace of upper surface of the given cowl; 
L”M” represents trace of streamline from uniform flow intersecting the leading 
edge of the given cowl at K”; 

N”Q” represents the modified upper surface of the cowl. 

The curve N”Q” is a second order polynomial in x1 chosen so that R”N” = h,, 
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S”Q” = h, + (& tan 13~ , dx2/dx1 = 0 at N” and dx2/dx1 = tan & at Q”. The values 
of (x’)~ and (x’)~ must satisfy the relation (xl), = -(x~)~ . The effect of rounding the 
leading edge is, of course, to extend the intake shape forward by an amount (xl), . 

In practice the magnitude of the modelling parameters (x’)~ , (~9)~ and 6 will be 
quite small. Experience has shown that choosing them to be too small leads to 

X2 
M” 

6’ & N” 
II’ K” 

R” S” x’ 
(Xl), 0” (Xl& 

FIG. 3. Modification to cross sectional shapes in planes x3 = constant ( x3 I Q b). 

breakdown of the calculation procedure. The value should be chosen just large enough 
to avoid such breakdowns. Section 6.5 contains satisfactory numerical values for a 
case that we have studied. 

6.4. Working Region for Calculations 

In order to use the numerical method described in this paper, functions having the 
form xi = xi(+, +?, 7”) i = 1, 2, 3 have to be defined in such a way that the region 
of x-space in which the flow is to be calculated is mapped into a simple region of 
T-space in which calculations are carried out. This region is called the working space. 
The functions defining the mapping have to be chosen so that boundary surfaces 
of the region in x-space are mapped into planes in q-space. 

For the intake cowl shape of Section 6.1, with the modifications described in Section 
6.3 the transformation defined by the following functions has the required character- 
istics: 

x1 = 
x2 = 
.x3 zz 

xl zzz 

9 = 

1 
7, 

A($) - 6 + (q2 + 6) sin [ ((Ty3)T ($)$” 1, 

b - 6 + (+ + S) cos [ ((;;8;‘“y;;;‘2], 
(7% d 73 G (7?3)2T (1) 

(73) - (7”)3 ] (b _ q, 
(73h 9 73 G h3)3 3 

('?")2 - (793 
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where 
h 

h,O ;- 0.5 tan 4&l - hW 
rll < ml 3 

(7?)2 - et>1 ' (7% G T1 6 ($)e 3 

ho + q1 tan 4, , ?I1 2 (rl92 . 

(2) 

The quantities (T’)~ , (T’)~ , (T~)~ , (q3)2 and (q3)3 are constants such that (~l)~ = (xl)1 
and (~l)~ = (xl), . The quantities (v~)~ and (q3)2, together with 6, (~3~ and (x’)~ 
may have values chosen by the user of the method. For fixed finite difference mesh 
lengths, fly1 and Aq2, the choice of (xl)1 will determine the number of finite difference 
points over the rounded leading edge region. The choice of values (T~)~ , (q3)2 and 
(~3)~ will determine the total number of mesh points ((~~)~/Liq~ must be an integer) 
in the q3-direction and the number of points in the q3-direction over the upper surface, 
over the rounding of the upper surface, and over the side-wall of the intake cowl. 

The transformation defined by Eqs. (1) and (2) have the effect illustrated in Fig. 4. 
The part of the surface q2 = 0 such that $ > (~l)~ and 0 < v3 < (v”)~ is the image 
in the working region of the part of the modified cowl surface that lies in the region 
x3 3 0. 

The procedure outlined in Section 5 can be used to solve the finite difference 
equations in the wedge-shaped working region defined by the inequalities (see Fig. 5) 

?1l 3 (77% ? 
0 < T2 < k(# - ($>3, (3) 
0 < q3 < (v313 * 

FIG. 4. Traces of the surfaces r)’ = constant and ?3 = constantlin a plane x1 = constant. 

FIG. 5. Wedge-shaped working region in y-space defined by inequalities (3). 
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The mesh size dq2 is chosen so that dq2 = k d$, and k itself is chosen so that the 
computations are stable and so that the dependent variables at points on 72 = 
k($ - (T’)~) have the same values as those in the uniform stream. On q2 = 0, the 
boundary condition of zero flow through the surface of the intake cowl is applied. 
On the surfaces 73 = 0 and q3 = (q3)3, which correspond to the planes x2 = 0 and 
x3 = 0 respectively, appropriate symmetry conditions are applied. 

6.5. Numerical Results 

Figure 6 shows comparisons between calculated values, linear theory values and 
measured values of pressure along the top centre line, KM (see Fig. l), of the intake 
cowl. The calculated values have been obtained for a shape, of the general form 
described in Section 6.1, with 

b = 0.08854167, 
h, = 0.02083025, 
eb = 3.8”, 

0.0; 

(4) 

. --. 0.06 .::i, 
L 005 

‘oxDoebbm 

0.04 
X’ 

0.0 02 04 04 0.8 I.0 

FIG. 6. Comparison of calculated values, linear theory values and measured values of pressure 
along the top centre line of the intake. g, free stream pressure; q , Calculated value, (T*)~ = 0.0157; 
0, Calculated value, (q*)* = 0.02198; x , measured value; -, linear theory; a.., exact theoretical 
solution. 

and for which 

6 = 0.01, and 

in a flow of AI, = 4.0. 
One set of results was obtained with 

(xy2 = 0.0125 (5) 

LIT)1 = 0.005, 

Llq2 = 0.005, 

dq3 = 0.000785, 

(7/ql = 0.005235988, 

(q3)2 = 0.01047198, 

(qq3 = 0.0157, 

(6) 
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so that in each plane v1 = constant there were 8 mesh points on the intake side-wall, 
7 on the rounded part of the model surface, and 8 on the flat upper part of the cowl 
surface. 

A second set of numerical results was obtained by adjusting the value of (T~)~ from 
0.0157 to 0.02198 so that with 4~~ = 0.000785 there were 8 mesh points on the 
intake side-wall, 7 on the rounded part, and 16 on the upper part of the cowl surface. 

In the numerical calculations, h, is small compared with b because the experimental 
results [17] available for comparison with calculated results were obtained using an 
intake wedge rather than a realistic intake cowl shape. Nevertheless, our view is 
that the successful results obtained for this problem are indicative of the quality of 
results that would be obtained for any intake for the general class described in 
Section 6.1. In the calculations that produced the numerical results given here, we 
effectively assumed constant entropy by using the equation (a/8$)( p/p’) = 0. 

The linear theory results in Fig. 6 were produced by treating the upper surface 
of the intake cowl as a plane wing with zero thickness. This is regarded as a reasonable 
assumption in the case considered here. 

Figures 7, 8 and 9 show the variation of pressure on the cowl upper surface with x3 
for three values of x1. Numerical results are shown for the two different mesh point 
distributions described earlier. The difference between the linear theory and the exact 
value for pressure on the surface of a wedge of semi-angle 3.8” indicates that non- 
linear effects are significant. The good agreement between the exact value for pressure 
on the surface of a wedge of semi-angle 3.8” and the calculated values at points 

0 

X3 
0 004 0.08 

FIG. 7. Pressure distributions on the cowl upper surface, x1 = 0.167. a, calculated value, 
(T*)~ = 0.0157; Q, calculated value, (~3~ = 0.02198; x. experimental value. 

0.07 
P 

1 

0.06 . ’ %Bx 

f 

O”& 

0.05 
x3 

0 004 008 

FIG. 8. Pressure distributions on the cowl up 
9r 

surface, xl = 0.333. a, calculated value, 
(?a)3 = 0.0517; 0, calculated value, (~3~ = 0.021 ; X, experimental value. 
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0.06 

P 

FIG. 9. Pressure distributions on the cowl upper surface, x1 = 0.5. q , calculated value, (qa)8 = 
0.0157; 0, calculated value, (T~)~ = 0.02198; X, experimental value. 

immediately downstream of the leading edge fairing was interpreted as an indication 
that the finite difference mesh size 4~~ = 0.005 was satisfactory. In the absence of 
experimental results for comparison the good agreement between the numerical 
results with 21 and 29 mesh points in the q3-direction, in the latter case there are more 
points on the cowl surface, would have been interpreted as an indication that the 
finer of the two finite difference mesh point distributions was satisfactory. 

The close agreement between the theoretical results and the experimental results 
provides additional evidence of both satisfactory accuracy of the computed results, 
and satisfactory performance of the numerical procedure as a whole. 

In the neighborhood of the surface delineating the region of influence of the side 
edge of the cowl surface, the exact solution of the inviscid flow equations has a 
discontinuous slope. This discontinuity leads to large truncation errors in the numer- 
ical solution in which the discontinuity is smoothed. The expected form of the exact 
theoretical solution has been filled in on a dotted line in Fig. 6. The computing time 
for a typical calculation of 200 steps with 21 mesh points in the y3-direction was 
342 seconds on the IBM 360/195 computer. 

7. OTHER NUMERICAL RESULTS 

Figures 10 and 11 are graphs showing some additional results obtained using the 
computational algorithms of this paper. This figure shows that the algorithm produces 
results in agreement with those obtained by Chu [2], who used a characteristics 

5 
0.08 

# 
0 90 180 

FIG. 10. Pressure distribution on the surface of an elliptic cone (axis ratio 2:1, incidence 4”, 
M, = 5.8). -, present method (shock treated as a discontinuity); X, Chu [2]; q , South and 
Klunker [18]; 0, Chapkis [19]. 
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method, and by South and Klunker [IS], who used the method of lines, for an elliptic 
cone. For this problem the bow shock wave was treated as a discontinuity. 

The shock capturing capability of the method is illustrated by graphs in Fig. 11. 
For an elliptic cone cylinder configuration, an embedded shock wave was detected 
at a station $ = 0.168, as described by Walkden and Evans [20] and then this 
shock wave was fitted as a discontinuity in the region $ > 0.168. The same flow 

P 

004 X2X@+ 

O-02 

I-- 

X 
BXXX 
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0.02 i 8 xX x 
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FIG. 11. Pressure variation with distance from the surface of an elliptic cone-cylinder, A&, = 5.8. 
X, shock capturing; q , shock fitted as a discontinuity. (a) 7’ = 0.168, 0 = 0”. (b) -ql = 0.168, 
0 = 90". (c) 7' = 0.38, 0 = 0”. (d) 7’ = 0.38, 0 = 90”. 

field was also calculated by using the method as a shock-capturing algorithm. Figures 
1 lc and 1 Id show that the shock capturing and shock fitting results compare well at 
+ = 0.38 after more than 106 integration steps. The elliptic cone cylinder confi- 
guration used has major and minor axes described by equations of the form 

C(xl) = 
1 

0.1 tan 8, x1 < -0.1, 
(0.1 + 2.5(x1 + 0.1)2) tan 8, -0.1 < x1 < 0.1, 
(0.1 + x1) tan 8, x1 > 0.1 

where 6’ = 11.80” or 5.96” for the major and minor axes respectively. 

(1) 

8. CLOSING REMARKS 

The study of the intake cowl problem described in Section 6 was hrst undertaken 
three years ago in order to determine if the general method of this paper provided 
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a satisfactory procedure for calculating steady supersonic flow fields. The results 
obtained, some of which are presented in this paper, were encouraging and subse- 
quently the method has been used to calculate flow fields produced by a variety of 
shapes under different conditions. Fuselage/cockpit canopy combinations, the tip 
of a rotating/translating helicopter blade, wings, and general cone problems are 
examples of problems to which the method of this paper has been applied successfully. 
Satisfactory results for certain of these problems have been presented already [21], 
but these investigations will be reported fully at a later date. The good agreement 
between theory and experiment for the intake cowl problem considered in detail 
here, and the variety of other problems for which satisfactory results have been 
obtained, leads us to conclude that the method of this paper is satisfactory and is 
versatile, in the sense that it can quickly be adapted to deal with a wide variety of 
different supersonic flow problems. 

At present, the main obstacle to investigating supersonic flow fields produced by the 
most complicated of real aircraft shapes is the problem of describing, to the computer, 
in an appropriate format, geometric details of the boundaries of such shapes and 
details of co-ordinate surfaces in the space surrounding such shapes. The specification 
of formats for the data and computer programs to produce large volumes of data 
in the required format is one area where more work is needed in order to further 
investigate and improve general computing procedures such as that described here. 

APPENDIX 1 

Expressions for hI , h, , h, and rl , r2 , r3 , k, (see Section 2) for Cartesian, cylindrical 
polar and spherical polar co-ordinate systems are given in the table below. 

Co-ordinate system 

Cartesian Cylindrical polar Spherical polar 

h 
hz 

h, 

rl 
r2 

r3 

k, 

1 1 1 

1 1 Xl 

1 X2 x1 sin(x2) 

0 0 Nu2)2 + (u3~“>lx’ 
0 (u3)2ix2 {(us)2 cot(x2) - U&}/X1 

0 - uzu3/x2 -{u943 cot(x2) + U~U3}/X’ 

0 - u21x2 -{2u, + u2 cd(x”)}/X 
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APPENDIX 2 

Elements of the matrices A, B and C (see Section 3). 

(A2.1) 

(A2.2) 

(A2.3) 
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